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Abstract

This paper presents a hydrometeor classification technique based on two-dimensional
video disdrometer (2DVD) data. The method provides an estimate of the dominant hy-
drometeor type falling over time intervals of 60 s during precipitation, using as input the
statistical behavior of a set of particle descriptors, calculated for each particle image.5

The employed supervised algorithm is a support vector machine (SVM), trained over
precipitation time steps labeled by visual inspection. In this way, 8 dominant hydrom-
eteor classes could be discriminated. The algorithm achieves accurate classification
performances, with median overall accuracies (Cohen’s K) of 90 % (0.88), and with
accuracies higher than 84 % for each hydrometeor class.10

1 Introduction

The two-dimensional video disdrometer (Kruger and Krajewski, 2002), 2DVD hereafter,
significantly improved the use of ground observations to describe the microphysics
and microstructure of precipitation both in the solid and the liquid phase. The system,
based on simultaneous observations of falling objects with two orthogonally-oriented15

cameras, has been used to characterize the relationships linking raindrop shape, size
and terminal velocity (e.g. Thurai and Bringi, 2005; Thurai et al., 2009). It has also been
employed to compare rainfall observations on the ground with weather radar measure-
ments (Schuur et al., 2001; Thurai et al., 2008; Cao et al., 2008; Zhang et al., 2008).
Regarding snowfall, the 2DVD has been used to derive the statistical properties of20

particle size distributions of winter storms (Brandes et al., 2007), to improve the con-
version of weather radar observations to equivalent liquid precipitation (Huang et al.,
2010), and to simulate radar observations in agreement with the measured snowfall
microstructure (Zhang et al., 2011).

In the present work we employ 2DVD measurements for the classification of hydrom-25

eteors, with a special focus on ice phase precipitation. The expression “hydrometeor
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classification” refers to techniques that aim at retrieving the qualitative information
about the dominant hydrometeor type characterizing the precipitation. Such infor-
mation can then be used for risk assessment (hazardous hydrometeors identifica-
tion), for parametrization and validation of numerical weather prediction (NWP) mod-
els (e.g., Xue et al., 2000), or to support microphysical investigations (e.g., Houze,5

1993; Schneebeli et al., 2013). Hydrometeor classification techniques are nowadays
implemented in different types of measurement sensors. Typical examples in remote
sensing are the algorithms designed for ground based polarimetric weather radars
(Straka et al., 2000; Dolan and Rutledge, 2009; Chandrasekar et al., 2013), or for air-
borne radars and lidars observing ice phase clouds (e.g., Delanoe et al., 2013). These10

sensors allow to sample large domains at high resolution in a short time lapse, but
their classification retrievals are indirect, constrained by numerical simulations, and
difficult to validate extensively. On the contrary, airborne particle probe imagers (e.g.,
Feind, 2008), allow to obtain a direct classification along the aircraft fly paths but only
(given the high cost of these platforms) during very specific measurement campaigns.15

Ground-based instruments sample precipitation directly on site (even though on small
sampling volumes), and could be used to classify hydrometeors, thus becoming a point
reference for remote sensing retrievals. Only few research works have been devoted
to the implementation of classification schemes for such instruments, and their focus
was mostly on mixed-phase precipitation (Yuter et al., 2006), or in the exploration of20

the potential synergy between multiple sensors (Marzano et al., 2010). Some com-
mercial disdrometers (i.e., PARSIVEL), orginally designed for rainfall studies, provide
an estimation of the precipitation type associated with each measurent by making as-
sumptions on fall velocity and and equivalent rainfall intensity. For this reason, they are
prone to unreliable estimates in complex site conditions.25

In this context the information provided by the 2DVD is of particular interest because
a couple of two dimensional views, together with fall velocity, is provided for each par-
ticle. Such features alone allow expert users to interpret the images and visually rec-
ognize in them specific hydrometeor types (e.g., Zhang et al., 2011). This suggests
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that automatic classification methods, based on training over visually interpreted (la-
belled) episodes may be well suited to perform hydrometeor classification. Supervised
classification algorithms, as the support vector machine, (SVM, Boser et al., 1992) are
nowadays used to face tasks of similar kind, as example for land cover classification
(Camps-Valls and Bruzzone, 2005), wind power forecast (Foresti et al., 2011; Zeng and5

Qiao, 2011), and weather prediction (Sullivan, 2009). SVM is a linear and binary su-
pervised classifier, that finds the optimal separations between observations belonging
to different classes. These observations are defined by a set of numerical features and
the optimal separation is learned from a training set where the association between
input observation and output class is known. SVM is able to handle high dimensional10

inputs, is less prone to over-fitting issues than other supervised methods (Camps-Valls
and Bruzzone, 2009), and it has been shown to be top ranked for weather predic-
tion classification tasks (e.g., Elmore, 2010). Furthermore SVM allows to retrieve the
most relevant input features driving the classification, and rank them in order of im-
portance, with the implementation of multiple kernel learning (SVM-MKL) techniques15

(Rakotomamonjy et al., 2008; Tuia et al., 2010).
In this paper we train a SVM model on 2DVD data in order to classify into 8 hydrom-

eteor classes the dominant type of precipitation during time intervals ∆t. Aggregation
over time intervals is conducted to reduce the computational cost, that may be exces-
sive if each particle is individually considered and a relatively short ∆t of 60 s is chosen20

to minimize the effect of mixing between separate hydrometeor types. 2DVD individual
images are summarized over ∆t with a high dimensional set of numerical features, con-
stituting the necessary input for the SVM classifier. Data collected in the Swiss Alps, in
the French Jura and in the Ontario region of Canada are used to train and validate the
model.25

The manuscript is structured as follows. Section 2 describes the experimental set up
and the basic 2DVD data. Section 3 presents the hydrometeor classification model.
Section 4 presents the main results and their quality assessment, while Sect. 5
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provides examples of the outputs of the hydrometeor classification. Section 6 con-
cludes the paper and lists some future perspectives.

2 Dataset description

2.1 Experiment locations

The 2DVD data employed in the experiments were collected during three field cam-5

paigns, between September 2009 and March 2013. The first campaign took place from
September 2009, until June 2011 in Davos (CH): the 2DVD was deployed in the Swiss
Alps, at an altitude of about 2500 ma.s.l. Data for a total of 1700 h of precipitation in
liquid, mixed phase and solid precipitation were collected during this time frame. The
second campaign took place in Remoray (FR), from December 2012 until March 2013,10

at an altitude of about 920 m in the context of an experiment focused on melting hy-
drometeors. 270 h of precipitation in solid, liquid and mixed phase were collected in this
experiment. The third complementary campaign includes about 200 h of data (mainly
solid precipitation) collected by three 2DVD instruments between December 2011 and
March 2012 in the framework of the Global Precipitation Measurement mission (GPM,15

http://pmm.nasa.gov/precipitation-measurement-missions), in the Cold-season Precip-
itation Experiment (GCPEx) that took place in Ontario (CA).

2.2 2DVD instrument and data pre processing

The 2DVD working principle has been extensively described in Kruger and Krajewski
(2002). Here we briefly summarize the most relevant features of the instrument. Fig-20

ure 1 illustrates the 2DVD measurement principle (see Fig. 3 of Kruger and Krajewski,
2002, for more details).

Two orthogonal light sources coupled with two (A and B) line scanning cameras,
generate two stacked measurement planes of about 10cm×10 cm. The planes are
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vertically separated by a distance in the range of 6.2–7 mm (the exact value is deter-
mined by mechanical calibration). The cameras capture the falling particles at a res-
olution of 512 pixels (0.2 mm) at 34 kHz, and the planar distance between A and B
measurements allows to infer the falling velocity.

The raw images need to be processed before being employed. This involves the fil-5

tering of unreasonable measurements, and the rematching of the measurements taken
from camera A and B, in order to ensure that both images actually refer to the same
particle. Filtering and rematching of 2DVD images is based on the work of Hanesch
(1999) and Huang et al. (2010). We followed their workflows with a noteworthy modifi-
cation. Among the filtering criteria, the authors (who were interested in snowfall only)10

were setting a maximum acceptable falling velocity of 4 ms−1 and 6 ms−1, respecitvely.
We increased this upper boundary to 14 ms−1, large enough to include with sufficient
margins the range of variation of rain (e.g., Beard, 1976) as well as large graupel (List
and Schemena, 1971).

Despite this filtering, some non realistic particles can still be observed in the output.15

These particles appear as large objects, vertically oriented and elongated, as shown in
Fig. 2. Because of these peculiarities, they are easily identified and excluded from the
analysis presented in this paper.

An additional potential source of uncertainty (whose magnitude is currently not
known in snowfall) is the image distortion that can occur when the horizontal com-20

ponent of the falling velocity of the particles is significant. This effect can be corrected
in rainfall only, and further research (beyond the scope of this paper) is needed to
develop correction schemes for snowfall measurements.

2.3 From single particles to global features

Couples of 2DVD A-B images are available for each particle falling in the measurement25

area. For the purpose of the present work, it is useful to summarize this large amount
of information by choosing a set of relevant descriptors. Then, the statistical distribution
of these descriptors in a time step ∆t is used as input information for the hydrometeor
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classification. The descriptors chosen in this work are listed in Table 1, and can be
divided in 3 groups.

2.3.1 Joint descriptors

Two descriptors are obtained by combining the views of cameras A and B. They are:
particle falling velocity v [ms−1], and equivolumetric diameter De [mm]. De denotes the5

diameter of a sphere having the same volume of the falling particle. This descriptor
was originally developed for raindrops, for which volumes can be calculated rather
accurately from the 2-D views, and it can be extended to particles of any shape (Huang
et al., 2010) as a reference measure of particle size.

2.3.2 Particle size10

Other descriptors can be computed separately for camera A and camera B and Fig. 3
illustrates some of them. The apparent shaded areas AA,B and perimeters PA,B are
readily available from the 2DVD measurements, while thicknesses TA,B and widths WA,B
of each particle are defined with respect to a bounding box around the particle (Fig. 3).
v , De, A, P , T and W together describe the particle bulk dimension and velocity.15

2.3.3 Particle shape

Additional descriptors are computed to better characterize particle shape. They are
adaptations to 2DVD images of dimensionless shape metrics commonly used in the
analysis of land-cover images for remote sensing (Jiao and Liu, 2012):

PFA,B =
AA,B

Ar
A,B

(0,1] (1)20

FORMA,B =
4πAA,B

P 2
A,B

(0,1] (2)
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SqPA,B = 1−4

√
AA,B

PA,B
[1−2/

√
π,1) (3)

FDA,B = 2
ln(PA,B/4)

ln(AA,B)
[1,2] (4)

SIA,B =
PA,B

4
√
AA,B

[
√
π/2,+∞] (5)

ELONGA,B =
WA,B

TA,B
[1,+∞] (6)

ROUNDA,B = 4
AA,B

πWA,B
2

(0,1] (7)5

where Ar
A,B [mm2] is the area of the bounding box calculated for image A (or B). PFA,B is

called pixel fraction and compares the shaded area with the area of the bounding box.
PFA,B is an index of compactness, as well as the roundness index, (ROUNDA,B) that
compares the shaded area with a circular approximation. FORMA,B and square pixel10

metric SqPA,B are shape complexity indices based on the area-to-perimeter ratio, (they
increase with decreasing complexity), while fractal dimension FDA,B and shape index
SIa,b are indeces based on the perimeter-to-area ratio (they increase with increasing
complexity). ELONGA,B evaluates the degree of elongation of the particles.

As introduced above, the feature vector used in the SVM model refers to the distri-15

bution of descriptors in a time step ∆t. Let us consider a time step ∆t, during which N
particles are recorded. We compute the mean, median, some quantiles (10 %, 25 %,
75 %, 90 %) and interquantiles (Q75–25, Q90–10) of each descriptor over the N par-
ticles available. Additionally, for the descriptors 3 to 13 of Table 1, we compute the
correlation coefficient between the measurements of camera A and B. This leads to20

a set of 203 features calculated per time step: 16 deriving from camera combinations,
1610
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88 calculated separately for A and B (so 176 in total), and 11 correlation coefficients.
We selected ∆t to be 60 s, as a trade-off between representativeness and temporal
resolution. Additionally, no statistics are computed if N is lower than 20 particles for
a specific time step (Appendix A). The 88 features calculated separately for A and B
have been verified to be consistent between each other, with biases generally lower5

than 10%. This suggests that for these 88 features, the information carried by a single
camera is sufficient. Therefore we can define, for each valid time step a final feature
vector x containing 115 useful features, by using only the 88 single features from one
of the two cameras.

3 Hydrometeor classification10

This section details the proposed supervised classification approach. First we define
the hydrometeor classes, then we detail how a training set is obtained and finally we
present the classifier employed and its implementation to the available dataset.

3.1 Hydrometeor classes and training set

The principle of supervised classification methods is to use a set of Ntrain labeled obser-15

vations (or training set) to train a classifier that will learn how to interpret new unlabeled
observations. In our case, we need to assign the appropriate dominant hydrometeor
type to a selected population of time steps ∆t. The 2DVD offers the possibility to visual-
ize the actual hydrometeor images, and the supervision is therefore conducted manu-
ally, according to the judgment of trained operators. The operators interpret the images20

by visualizing particle shapes, velocities, and taking into account the environmental
conditions on site (time of the year, temperature). Additionally, for the data collected in
Davos (CH), X-band radar observations over the region were available (e.g. Schneebeli
et al., 2013), thus providing context information about the structure of precipitation, and
in stratiform cases, about the altitude of the melting layer.25
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The visualization and pre-interpretation of a wide range of time steps led to the selec-
tion of 8 hydrometeor classes, to describe the possible precipitation types in the avail-
able dataset. Figure 4 shows an example of a typical particle belonging to each class.
The classes are: Small particle-like (SP), Dendrite-like (D), Column-like (C), Graupel-
like (G), Rimed particle-like (RIM), Aggregate-like (AG-l), Melting snow-like (MS-l), and5

Rain (R). The “-like” is added to emphasize that this approach identifies the dominant
type of hydrometeor, which does not necessarily imply that: (i) there is only one type
of hydrometeor in the considered time step, and (ii) that all hydrometeors exhibit the
pristine shape and geometry.

The definition of some hydrometeor classes requires clarifications. SP time steps10

refer to particles falling during ice-phase precipitation that, given their size and the
resolution of the instrument (0.2 mm), do not allow proper visual shape recognition.
Small aggregates, as well as single ice crystals can be assumed to belong to this class.
RIM is observed when riming processes smoothen the shapes of the hydrometeors
and increase their fall speed, while G time steps refer to fully developed graupel, when15

the original shape of the rimed crystal is not recognizable anymore. MS is observed
when the instrument records precipitation within the melting layer, and in these time
steps raindrops, snowflakes, and smoother snowflakes with larger fall speed co-exist
in mixed phase.

The creation of the training set involves the inspection of all the particles within each20

time step, in order to retrieve the dominant particle type and to provide the appropriate
label. Particular attention is paid to the selection of time steps that are as pure as
possible, for the subsequent training of the classifier. The training set employed in the
present work includes Ntrain = 400 time steps, each of them numerically characterized
by the 115 components of the associated feature vector x defined in Sect. 2.3.25
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3.2 Classification method

In this section, we present the classifier used, the SVM. Then, we will briefly detail an
extension of SVM allowing to retrieve the importance of each input feature (or group of
features) in the model, SVM-MKL.

3.2.1 SVM5

Support Vector Machines (Boser et al., 1992; Scholkopf and Smola, 2001), also known
as large margin classifier, are linear classifiers, which find the best linear separation
between samples belonging to two classes. In our case, samples are time steps i of
length ∆t, represented by a vector xi of d = 115 features and the classes are the 8
dominant types of hydrometeors, yi . The model is trained on known couples Xtrain =10

{xi ,yi}
Ntrain

i=1 , with xi ∈Rd and yi ∈ [−1,1]. It must generalize well on a set of unknown

samples, for which we do not know the dominant hydrometeor type Xval = {xv}
Nval

v=1.
SVM finds the best linear separation, of type f (x) = 〈w ,x〉+b, for which all training

samples are at least at a distance of 1 from the separating plane. In other words, for all
training samples f (x) must be greater or equal to one. To differentiate between positive15

and negative examples, we also multiply this expression by 1 if the sample is of the
positive class and by −1 if it is of the negative class (the two types of hydrometeors).
Summing up, the constraint is yi (〈w ,xi 〉+b) ≥ 1, ∀i ∈ Ntrain. The strategy pursued by
SVM (more details in Boser et al., 1992) is to find the separation which maximizes the
distance between the closest points of each class, also called support vectors. This20

distance is called margin and is inversely proportional to the norm of the parameters
vector, i.e. ||w ||2. In order to allow some classification errors, we also introduce a term
ξi , which is non-zero for samples classified wrongly. The margin maximization problem
is the following one:
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min
w ,b,ξ

{
1
2
||w ||2︸ ︷︷ ︸

Complexity of the function

+ C
Ntrain∑
i=1

ξi︸ ︷︷ ︸
Training errors

}
(8)

s.t.

{
yi
[
〈x,w 〉+b

]
≥ 1− ξi

ξi ≥ 0 and i = 1, . . . ,Ntrain

C is a parameter that controls the constraint of perfect classification: if we allow
some errors (by keeping C low), the margin becomes of larger width, thus reducing5

the dependence of the final model on training samples, that may be noisy or issued
from errors in the measurements. A too high C increases drastically the value of the
cost function, as soon as errors are made. In this case, the resulting model will achieve
perfect classification of the training samples, but the risk of overfitting the training data
and achieve poor generalization in the validation phase is higher.10

This optimization model is solved using Lagrangian multipliers α , which allow to
rewrite the problem as:

max
α


Ntrain∑
i=1

αi −
1
2

Ntrain∑
i ,j=1

αiαjyiyj 〈xi ,xj 〉

 (9)

s.t. 0 ≤ αi ≤ C and
Ntrain∑
i=1

αiyi = 0
15

When the optimal solution to Eq. (9) is found (i.e., the vector of coefficients α ), the label
of an unknown sample xv is assigned on the basis of the sign of the decision function,
i.e., its position with respect to the hyperplane (f (x) = 0):

yv = sign

Ntrain∑
i=1

αiyi 〈xi ,xv 〉+b

 . (10)
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It can be observed that in the present formulation, SVM is only a binary classifier.
A number of strategy exist to reduce multiclass to binary problems, and in the present
work the one-against-one rule was employed (Hastie and Tibshirani, 1998).

3.2.2 Nonlinear SVM

SVM, as it has been presented above, can solve only linear problems (they define5

a linear hyperplane). However, there is an elegant solution to solve nonlinear problems.
Let us go back to Eqs. (9) and (10): the solution of the optimization does not depend
on the training samples themselves, but only one the dot products between samples
(see 〈xi ,xj 〉 in Eq. 9). In the same way, the prediction for a new sample only depends
on its dot products with the training samples (see 〈xi ,xv 〉 in Eq. 10). Dot products are10

measures of similarity between the samples. To perform nonlinear classification we
need to find an estimate of their similarity in a projected space of higher dimension H,
where linear separation becomes possible1. To avoid defining explicitly the coordinates
of the samples in the projected space, i.e., φ(xi ), we can use functions that, even if
expressed with points in the original space, correspond to dot products in the projected15

space H: these functions are called kernels. Without entering mathematical details, that
the interested reader can find in Scholkopf and Smola (2001), a kernel corresponds to
a similarity function such that K (xi ,xj ) = 〈φ(xi ),φ(xj )〉. This means that, for a given
projection φ(·), the kernel computed from xi and xj will correspond to their similarity in
the space H defined by φ(·). A classification, which is linear in the projected space, is20

nonlinear in the original space, as illustrated in Fig. 5.
In practice, in order to obtain a nonlinear classification with SVM, we replace the dot

products in Eqs. (9) and (10) by kernel functions K (xi ,xj ) and K (xi ,xv ), respectively.
A classical kernel to obtain such a behavior is the Radial Basis Function (RBF), which

1The Cover theorem states that the probability of linear separability increases with the di-
mensionality of the space (Cover, 1965).
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is computed as follows:

K (xi ,xj ) = exp

(
||xi −xj ||

2

2σ2

)
. (11)

The RBF kernel acts as a Gaussian similarity, which is maximal when considering
the same samples (K (xi ,xi ) = 1), and decreases jointly with the decrease of similarity
between the samples. The bandwidth σ controls the steepness of the Gaussian bell.5

3.2.3 SVM-MKL

Even if very successful, SVM remains a black-box model, in the sense that no informa-
tion about the importance of the initial variables can be retrieved from its results. All op-
erations are optimized in the projected space H: this means that, while it avoids to com-
pute the projection of the samples explicitly, it also prevents to assess the importance10

of the different variables involved. Recent researches have offered a solution to this
problem by introducing the concept of Multiple Kernel Learning (MKL, Rakotomamonjy
et al., 2008).

SVM-MKL builds on the so-called Mercer conditions stating that a weighted sum of
any positive definite function (a requirement for all kernel functions) is again definite15

positive (Mercer, 1909). This means that we can design a valid kernel by a linear com-
bination of M base kernels Km(xi ,xj ), each one considering single timestep features
(in this case M = 115) or sets of timestep features (in this case M < 115 and equals
the number of groups of descriptors):

K (xi ,xj ) =
M∑

m=1

dmKm(xi ,xj ) (12)20

dm is the weight attributed to each kernel Km and is a measure of the importance of
this kernel in the combination, i.e., of the variables composing it. It usually sums up
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to 1. The SimpleMKL algorithm proposed in Rakotomamonjy et al. (2008) optimizes
alternatively the weights and the SVM and allows to retrieve at the same time the
relative importance of each group (dm) and the SVM model associated to the final
weighted combination.

In our experimentation, we used SimpleMKL to find the best combination of a se-5

ries of RBF kernels Km, each one assigned to a set of features referring to the same
particle descriptor (M = 13, see Table 1). As an example, K1 takes into account the 8
statistical features (Q10, Q25, Q50, Q75, Q90, IQ75–25, IQ90–10, mean) associated
with the hydrometeor fall velocity v descriptor, while K2 the 8 features associated with
the equivolumetric diameter De, and so on.10

4 Results and discussion

4.1 Performance-assessment metrics

The evaluation of the accuracy of classification is conducted via different metrics. The
available Ntrain training observations are divided in two parts (N∗

train and N∗
val). N

∗
train ob-

servations are used as training set to optimize the SVM parameters C and σ and to15

train the SVM, while the remaining N∗
val observations are kept for validation. A compar-

ison is made between the SVM classification output {y∗
i }

N∗
val

i=1 , and the true labels {yi}
N∗

val

i=1
by evaluating a 8×8 confusion matrix C, as shown in Table 2. The elements C(i , j ) con-
tain the number of observations classified in the i -th class, which in reality belong to
the j -th class. The diagonal contains the correct classifications.20

Given the confusion matrix, the global performances of the classifier are quantified
by the overall accuracy (OA), and Cohen’s Kappa (K):

OA =

S∑
i=1

C(i , i )

N
×100 (13)
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K =
OA− Pest

1− Pest
(14)

Pest =

S∑
i=1

 S∑
j=1

Cj ,i

S∑
j=1

Ci ,j


N2

where S is the total number of classes, and N the total number of observations (in our
case S = 8 and N = N∗

val). K takes into account the correct prediction that might occurs5

by chance, namely Pest, and is a robust metric in case of unbalanced classes.
Then, we look at the performances obtained within each class. For this purpose, we

use:

OAk =
C(k,k)
S∑
i=1

C(k, i )

×100 (15)

PODk =
C(k,k)
S∑
i=1

C(i ,k)

(16)10

POFDk =

[ S∑
i=1

C(k, i )
]
−C(k,k)

S∑
i=1

C(k, i )

(17)

where OAk is the accuracy of the k-th class, PODk and POFDk are the associated
probability of detection and false detection.

1618

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/1603/2014/amtd-7-1603-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/1603/2014/amtd-7-1603-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 1603–1644, 2014

Hydrometor
classification from

2-D videodisdrometer
data

J. Grazioli et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.2 Evaluation of the quality of the training set

Ntrain observations are available in total as training set, and we must verify that this
amount is sufficient for the present task. In other words we want to assess here if
a larger Ntrain would improve significantly the hydrometeor classification. To do so we
proceed as follows: (1): Ntrain = 400 is initially randomly split into N∗

train = 300 and N∗
val =5

100; (2): N∗
train is iteratively reduced in size, while the orginal N∗

val is kept for validation;
(3): Evaluation of the performances is conducted at each step; (4): steps (1)–(3) are
repeated with 200 realizations of the original split.

Figure 6 shows the evolution of K as a function of the number of training samples
in the training set (N∗

train). We can observe that N∗
train larger than 200 does not lead10

to significant improvements in terms of K, while when N∗
train is smaller than 100, the

performances start to degrade sharply. These results suggest that the total available
labeled samples (400) are sufficient for the present classification task.

4.3 Evaluation of the classification performances

For validation purposes, we focus now on 200 realization of the case N∗
train = 300, N∗

val =15

100. The classification achieves accurate global results, both in terms of OA and K. As
shown in Table 3, K and OA mean values are 0.88 and 89 %, and in 90 % of the cases
they take values higher than 0.84 and 86 %, respectively. Additionally, K tends to be
close to OA, indicating that the amount of correct classification occurring by chance is
very limited.20

The classification performance associated to each hydrometeor class is summarized
in Fig. 7. It can be observed that all the hydrometeor classes are identified with median
OAk always greater than 84 %, PODk greater than 0.84, and POFDk lower than 0.16.
Overall, rainfall (R) hydrometeor class achieves the best scores, together with columns
(C). R hydrometeors show a PODk equal to one, meaning that errors for this class25

are uniquely false detections. On the contrary, C hydrometeors show POFDk and OAk
very close to one, and the errors for this class are due mainly to missed detection, with
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PODk scores around 0.9 in median. Graupel (G) is mostly affected by missed detec-
tions, and shows a relatively large interquantile spread for PODk , around the median
value of 0.84. Small particles (SP) have the highest false detection rate, with median
POFDk close to 0.15. Dendritic snow (D) exhibits the largest interquantile spreads,
around otherwise satisfactory median values of 86 % (OAk), 0.89 (PODk), and 0.145

(POFDk), followed by rimed particles (RIM) that exhibit a similar behavior, achieving
anyway higher scores for all the metrics. Aggregates (AG) and melting snow (MS) are
both correctly predicted, with lower interquantile spread, median OAk larger than 88 %,
PODk larger than 0.89 and POFDk lower than 0.12.

A last consideration concerns the choice of SVM as classifier. Other methods are10

used to solve similar tasks in various fields of the environmental sciences, for example
linear discriminant analysis (LDA) or neural network (NN) (e.g., Goosaert and Alam,
2009; Robert et al., 2013). Comparison with these 2 methods showed that the pro-
posed SVM scheme outperforms LDA by more than 0.2 and NN by more than 0.1 in
terms of K.15

4.4 Ranking of descriptors

The SimpleMKL algorithm is applied to learn the most relevant descriptors in the clas-
sification process, as explained in Sect. 3.2.3. Referring to Eq. (12), it was observed
that 5 groups of features out of the 13 ones (one per descriptor, each including the 8
or 9 statistical features extracted from its distribution in ∆t = 60s), were accounting for20

about 70% (Fig. 8) of the total weights and therefore are considered hereafter as the
most important ones. They are, in decreasing order of importance: pixel fraction PF, ve-
locity v , equivolume diameter De, form index FORM and thickness T , with associated
weights dm of 0.193, 0.181, 0.13, 0.112 and 0.098, respectively. This does not imply
that the remaining 8 descriptors are negligible in the classification process, but we ex-25

pect to find a more immediate and intuitive physical meaning in these 5 top-ranked
ones.
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5 Application on unlabeled data

This section presents some examples of the classification output, on data not included
in the training set of the algorithm, and collected during the measurement campaign of
Davos (CH).

5.1 17 March 20115

A snowfall event occurring on the 17 March 2011 is presented in Fig. 9. The air tem-
perature recorded on a nearby site was constantly below freezing (≈ −5 ◦C) through all
the event duration and different ice-phase hydrometeors were identified in the time win-
dow shown here. Initially (07:00–09:00 UTC) precipitation is dominated by small parti-
cles (SP), followed by a phase of instability (09:00–10:00 UTC) characterized by sharp10

variations of the identified hydrometeor classes. In a second time (10:00–12:30 UTC),
graupel (G) and larger rimed particles (RIM) are identified. Panels (b), (c), and (d) of
Fig. 9 illustrate the behavior in time of the three top ranked particle descriptors, namely
pixel fraction PF, equivolume diameter De and fall velocity v . PF is around 0.7, in me-
dian value during the whole event, indicating relatively high particle compactness. De15

is initially below 1 mm in median value (SP phase), and it increases to values between
1 and 2 mm in the second part of the event (G and RIM phases). v exhibits the same
trends as De and it increases when rimed particles and grauple are dominant.

5.2 12 January 2011

A different situation is depicted in Fig. 10, relative to a snowfall event recorded on20

the 12 January 2011. In this case, for the time window shown (19:00–24:00 UTC),
precipitation is dominated by aggregates (AG) and dendritic shaped snow (D, at the
end of the event). By comparing the present case with the one shown in Fig. 9, we
observe a wider range of variation of particle sizes, with De ranging between 0.5 mm
and 8 mm (AG), sometimes higher than 2 mm in median value. Particle compactness25
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is lower, with PF below 0.7 in median through all the event, slightly lower for D than for
AG. This is due to the higher geometrical complexity of aggregates and dendrites, in
comparison with small particles and graupel. The velocity v does not exhibit peculiar
trends, and it remains around values of 1 ms−1 in median.

5.3 5 August 20105

The precipitation event occurred on the 5 August 2010 (Fig. 11) illustrates well the tran-
sition between liquid-phase and ice-phase precipitation. In the first part of the event
(05:00–07:45 UTC) air temperature is around 4 ◦C, and drops to 0 ◦C in a second part
of the event (07:45–08:00 UTC). After 08:00 UTC the air temperature stabilizes again
around 0 ◦C. These trends in temperature are reflected directly in the dominant hydrom-10

eteor types classified: initially rain (R), then melting-snow (MS), and finally aggregates
(AG). Rain is here characterized by v ranging from 2 ms−1 to 5 ms−1 (light rain, as seen
also in De), larger than the typical velocities of ice-phase hydrometeors, and very high
compactness with PF around 0.9 in median. In the transition from R to MS and AG,
a clear and relatively smooth trend is observed for the three descriptors shown: v de-15

creases to median values around 1 ms−1, the range of variation of De increases, and
the median PF drops around 0.6 in the AG phase at the same time, as the geometrical
complexity of falling hydrometeors increases.

In general terms, the transition between R, MS and AG is captured well in the large
available dataset. Figure 12 shows the occurrence of classification of these three20

classes as a function of the temperature. R occurs always at positive temperatures,
MS maximum occurrence is between 2 ◦C and 1 ◦C, and AG around 0 ◦C and −1 ◦C (in
agreement with Hobbs et al., 1974).
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6 Summary and conclusions

In this paper we presented a hydrometeor classification method based on the interpre-
tation of 2DVD data. The classification, conducted with the SVM technique, uses as
input the statistical behavior of a set of particle descriptors over time steps ∆t of 60 s.
The SVM is trained with 400 examples labeled by expert users, and outputs the dom-5

inant hydrometeor type within ∆t. Additionally, an estimation of the relative descriptive
importance of the input features is provided, of particular interest when higher-level
information on the particle characteristics is required.

Discrimination is performed between 8 hydrometeor classes: small particle-like,
dendrite-like, column-like, graupel-like, rimed particle-like, aggregate-like, melting10

snow-like, and rain. Evaluation of the classification performances is conducted both
in global and class-specific terms. The classifier achieves accurate results, with me-
dian OA and K of 90 % and 0.88 respectively. All the classes are identified with specific
accuracy higher than 84 % in median value.

Three classification examples together with the time evolution of the top-ranked par-15

ticle descriptors were used to illustrate the typical classification products in pure snow-
fall events and in the transition between snowfall and rainfall. Global hydrometeor type
behavior as well as small-scale fluctuations can be observed.

The proposed classification of hydrometeors provides a very interesting additional
information to the primary 2DVD products, that can also help better understand the20

microphysical processes characterizing ice-phase precipitation events. This work has
also the potential to be a starting point for ground-based quantitative evaluation of
products coming from polarimetric weather radars, and it could be adapted and imple-
mented in different particle imaging systems, either ground-based or airborne.

The choice of the SVM as classifier makes the method well balanced in terms of25

accuracy and computational cost, and adaptable to real time applications. The main
limitation is that the current implementation provides bulk information over a given time
step ∆t, large enough to be statistically significant, but cannot provide estimation of
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hydrometeor mixtures over ∆t. Future work will focus on the development of a particle-
by-particle classification, more challenging in terms of computational requirements,
that can lead to explicit quantification of hydrometeor mixtures.

Appendix A

Minimum number of particles for a reliable classification5

The proposed classification method employes as input a set of statistical features cal-
culated over N particles, within a time step ∆t. Thus, when N is small, sampling prob-
lems can affect the estimation of such statistics. We want to set a minimum Nmin, such
that if N > Nmin the classification output is reliable.

Figure A1a shows the contribution that time steps ∆t for small N have with respect10

to the total amount of data available, both in term of total number of particles and in
term of total number of time steps.

We can observe that time steps ∆t with low N contribute negligibly to the total particle
count, but significantly to the total count of available time steps. In other words, time
steps with a low number of particles carry only a small part of the total precipitation,15

but they are observed frequently.
Figure A1b illustrates the classification performance achieved when N < 60. This is

obtained by taking 57 random subsets of the available training set (with known labels),
and using them as validation of the SVM algorithm trained previously. We can observe
that for N < 20 the performances degrade sharply, and become more than 20 % lower20

than cases with N > 60. A threshold Nmin = 20 is therefore selected.
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Table 1. List of descriptors chosen to describe the particles recorded. Descriptors 1 to 2 come
from combination of camera A and B; 3 to 6 describe particle size; 7 to 13 particle shape.

Symbol Full name Units

1 v fall velocity [ms−1]
2 De equivolumetric diameter [mm]

3 AA,B shaded area [mm2]
4 PA,B shaded perimeter [mm]
5 TA,B particle thickness [mm]
6 WA,B particle width [mm]

7 PFA,B pixel fraction [–]
8 F ORMA,B form index [–]
9 SqPA,B square pixel metric [–]
10 FDA,B fractal dimension [–]
11 SIA,B shape index [–]
12 ELONGA,B elongation [–]
13 ROUNDA,B roundness [–]
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Table 2. Example of a confusion matrix obtained during validation of the SVM calssification for
a validation set N∗

val of 100 observations. Correct classifications are situated on the diagonal,
and misclassifications are in the off-diagonal entries.

True

P
re

d
ic

te
d

SP D C G RIM AG MS R
SP 14 0 1 3 0 0 0 0
D 0 9 0 0 0 3 0 0
C 0 0 9 0 0 0 0 0
G 1 0 0 9 0 0 0 0

RIM 0 0 0 0 8 0 0 0
AG 0 0 0 0 0 11 1 0
MS 0 0 0 2 0 1 13 0
R 0 0 0 0 0 0 0 15
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Table 3. Mean values and relevant quantiles of K [–] and OA [%], calculated over 200 iterations
of the SVM validation procedure.

Parameter Q10 Q25 Q50 Q75 Q90 mean

K 0.84 0.86 0.88 0.91 0.93 0.88
OA 86 88 90 92 94 89
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Fig. 1. 2DVD measurement principle.

Fig. 2. Example of A-B views of a non-realistic particle, that needs to be filtered.

20

Fig. 1. 2DVD measurement principle.
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Fig. 2. Example of A-B views of a non-realistic particle, that needs to be filtered.
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Fig. 3. Examples of particles descriptors of 2DVD images (camera A and B). On camera A: width (WA [mm])

and thickness (TA [mm]) of the bounding box enclosing the particle. On camera B: particle apparent perimeter

(PA [mm]) and shaded area (AA [mm2]).

(Small particle-like) (Dendrite-like) (Column-like) (Graupel-like)

(Rimed particle-like) (Aggregate-like) (Melting snow-like) (Rain)

Fig. 4. Examples of particle images (two camera views: A left, B right), belonging to time steps dominated by

a particular hydrometeor class.

21

Fig. 3. Examples of particles descriptors of 2DVD images (camera A and B). On camera A:
width (WA [mm]) and thickness (TA [mm]) of the bounding box enclosing the particle. On camera
B: particle apparent perimeter (PA [mm]) and shaded area (AA [mm2]).
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Fig. 4. Examples of particle images (two camera views: A left, B right), belonging to time steps dominated by

a particular hydrometeor class.
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Fig. 4. Examples of particle images (two camera views: A left, B right), belonging to time steps
dominated by a particular hydrometeor class.
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Fig. 5. Illustration of nonlinear SVM. (a) A nonlinearly separable dataset in the input space X , involving two

classes (squares and circles). (b) Projection on a 3D space H by the kernel K(xi,xj) = 〈xi,xj〉2. (c) Linear

classification in the projected space H (filled dots are support vectors). (d) Corresponding nonlinear decision

function in the original space X . Adapted from Volpi et al. (2013).

Fig. 6. Evolution of K [-], as a function of the training set size. The solid red line indicates the median, while

the blue and brown areas represent Q75-25 and Q90-10, respectively. The size of the training set has been

varied with a step of 1, between 300 and 20. Statistics are based on 200 realizations.
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Fig. 5. Illustration of nonlinear SVM. (a) A nonlinearly separable dataset in the input space
X , involving two classes (squares and circles). (b) Projection on a 3D space H by the ker-
nel K (xi ,xj ) = 〈xi ,xj 〉

2. (c) Linear classification in the projected space H (filled dots are sup-
port vectors). (d) Corresponding nonlinear decision function in the original space X . Adapted
from Volpi et al. (2013).
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classification in the projected space H (filled dots are support vectors). (d) Corresponding nonlinear decision

function in the original space X . Adapted from Volpi et al. (2013).

Fig. 6. Evolution of K [-], as a function of the training set size. The solid red line indicates the median, while

the blue and brown areas represent Q75-25 and Q90-10, respectively. The size of the training set has been

varied with a step of 1, between 300 and 20. Statistics are based on 200 realizations.
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Fig. 6. Evolution of K [–], as a function of the training set size. The solid red line indicates the
median, while the blue and brown areas represent Q75–25 and Q90–10, respectively. The size
of the training set has been varied with a step of 1, between 300 and 20. Statistics are based
on 200 realizations.
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Fig. 7. Barplots of: OAk [%], PODk [-], POFDk associated with the 8 hydrometeor classes undergoing classifi-

cation. Statistics calculated over 200 realizations of the SVM validation. Single points (outliers) are represented

as circles.
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Fig. 7. Barplots of: OAk [%], PODk [–], POFDk [–] associated with the 8 hydrometeor classes
undergoing classification. Statistics calculated over 200 realizations of the SVM validation. Sin-
gle points (outliers) are represented as circles.
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Fig. 8. Weights dm of the 13 Km Kernels, associated with the 13 particle descriptors used in the present study.
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Fig. 8. Weights dm of the 13 Km Kernels, associated with the 13 particle descriptors used in the
present study.
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(c)
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Fig. 9. Snowfall event recorded the 17-th March 2011. Time series of: (a) dominant hydrometeor type as

classified with the SVM and local ambient temperature [◦C], as measured by a closely located weather station,

(b) De [mm], (c) pixel fraction of camera A PFA, (d) fall velocity v [m/s]. In panels (b), (c), and (d) black dots

connected by the red solid line indicate the median value, while the shaded ares depict Q90-Q10 and Q75-Q25,

respectively.
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Fig. 9. Snowfall event recorded the 17 March 2011. Time series of: (a) dominant hydrometeor
type as classified with the SVM and local ambient temperature [◦C], as measured by a closely
located weather station, (b) De [mm], (c) pixel fraction of camera A PFA [–], (d) fall velocity v
[ms−1]. In panels (b), (c), and (d) black dots connected by the red solid line indicate the median
value, while the shaded areas depict Q90–10 and Q75–25, respectively.
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Fig. 10. As in Figure 9, for the 12-th January 2011.
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Fig. 10. As in Fig. 9, for the 12 January 2011.
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(d)

Fig. 11. As in Figure 9, for the 5-th August 2010.
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Fig. 11. As in Fig. 9, for the 5 August 2010.
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Fig. 12. Distribution of the occurrence of AG, MS and R as a function of air temperature. The distribution is

obtained by aggregation of all the 2DVD measurements collected during the field experiments of Davos 2009-

2011 (CH) and Remoray 2012-2013 (FR), and temperature data are given by closely-located weather stations.
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Fig. 12. Distribution of the occurrence of AG, MS and R as a function of air temperature. The
distribution is obtained by aggregation of all the 2DVD measurements collected during the field
experiments of Davos 2009–2011 (CH) and Remoray 2012–2013 (FR), and temperature data
are given by closely-located weather stations.
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(a)

(b)

Fig. 13. (a) Contributions [%] of time steps ∆t with less than 60 particles to the total database of observations.

(b) Classification peformance as a function of the number of particles recorded per time step. ∆t with less than

3 particles do not contribute to these statistics.
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Fig. A1. (a) Contributions [%] of time steps ∆t with less than 60 particles to the total database
of observations. (b) Classification peformance as a function of the number of particles recorded
per time step. ∆t with less than 3 particles do not contribute to these statistics.
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